Spotlight on Alessandra: Celebrating Her Achievements

We are proud to celebrate the remarkable accomplishments of Alessandra Palladino, a standout member of our Smart Polymers Lab. Alessandra has recently graduated with a Bachelor of Science in Biomedical Engineering (BMEN) from the University of North Texas, achieving summa cum laude honors. Her dedication and excellence have also earned her the title of Outstanding Senior from our department.

In addition to her academic achievements, Alessandra and her team, DEOS Solutions, won the prestigious prize for the best senior design project. This accolade is a testament to her innovative thinking and commitment to practical applications in biomedical engineering.

Alessandra’s journey with us does not end here. We are thrilled to announce that she will continue her academic and research pursuits by enrolling in our Master of Science program. We look forward to her continued contributions and are excited to see the innovations she will bring to the field.

Please join us in congratulating Alessandra on her outstanding accomplishments and wishing her continued success in her future endeavors.

Celebrating a Milestone: Chandani, Our First PhD Graduate!

We are thrilled to share a momentous achievement in the history of our lab – the graduation of Chandani Chitrakar, our first-ever PhD student! Chandani has been an integral part of our research community, and her dedication, passion, and hard work have left an indelible mark on our lab.

The Journey:

Chandani embarked on her doctoral journey with us in 2019, bringing not only her academic prowess but also a contagious enthusiasm for pushing the boundaries of scientific exploration. Throughout the years, she has been a beacon of inspiration for her peers and an invaluable asset to our research endeavors.

Research Contributions:

Chandani’s research has been nothing short of groundbreaking. Her innovative work on the DEVELOPMENT AND CHARACTERIZATION OF COMPLIANT BIOELECTRONIC DEVICES FOR GASTROINTESTINAL STIMULATION has not only expanded our understanding of smart polymers but has also garnered recognition within the scientific community. Her contributions have been instrumental in shaping the direction of our lab’s research and will undoubtedly influence the field for years to come.

Collaboration and Leadership:

Beyond her individual achievements, Chandani has been a collaborative force within our lab. She has fostered a culture of teamwork, inspiring fellow students and researchers to work together toward common goals. Her leadership qualities have been evident in several publications, where she spearheaded the manuscript preparation.

Chandani’s Impact:

As Chandani walks across the stage to receive her well-deserved doctoral hood, we reflect on the lasting impact she leaves on our lab. Her resilience, intellectual curiosity, and commitment to excellence have set a high standard for future graduate students to aspire to.

Looking Ahead:

Chandani’s success is a testament to the vibrant research environment we strive to cultivate in our lab. As we celebrate this milestone, we eagerly anticipate the continued success of our graduate students, each contributing to the rich tapestry of discoveries that define our research community.

Join us in extending heartfelt congratulations to Chandani for her remarkable achievement! As she takes the next steps in her career, we are confident that her journey will continue to inspire and shape the future of scientific inquiry.

We are hiring

Research Assistant/Ph.D. Position in Polymeric Biomaterials

The Smart Polymers for Biomedical Applications Lab (aka the Ecker Lab) in the Department of Biomedical Engineering at the University of North Texas has an open Ph.D. position for Fall 2023.

Project Background

The Ecker Lab is conducting research at the intersection of polymer science and biomedical engineering. Our Team is quite diverse and has expertise in Chemistry, Materials Science, Engineering, and Biology. We combine all those fields to develop next-generation biomedical devices based on smart polymeric materials. These materials consist of shape memory polymers that are responsive to bodily conditions and are mechanically adaptive to comply with a tissue. Some of our custom polymers are also biodegradable. Additionally, we make sure that our novel materials are biocompatible.

Job Description

We are looking for an enthusiastic and motivated individual to investigate the structure-property relationship of shape memory polymers for biomedical applications. The goal of this NSF-funded project is to elucidate the underlying mechanism of the plasticization-induced shape memory effect of thiol-ene-based polymers. The model application for this material will be a heat shrink tubing that can shrink at bodily conditions (37° C and simulated body fluids) and can be used to seal colonic anastomosis.

This project will be based in Melanie Eckers Smart Polymers for Biomedical Applications Lab at UNT.

Your Profile

  • You hold a Master’s degree in materials science, polymer science, chemistry, or a related field.
  • Experience in polymer material processing (required)
  • Experience with shape memory polymers (beneficial)
  • Experience with mechanical and thermomechanical characterization (beneficial)
  • Proficiency in oral and written English (required)
  • Enthusiastic, creative, and self-motivated (required)

We Offer

We offer a research assistant position for up to five years (contingent on yearly positive evaluations). You will be working in a dynamic and interdisciplinary work environment in the Ecker lab, which is part of the Department of Biomedical Engineering. Our lab is highly diverse, and we value members from all personal backgrounds.

Our department is committed to educating and creating well-rounded, knowledgeable biomedical engineers passionate about improving the quality of life for people in Texas, the United States, and the world. Our Ph.D. program offers two tracks: a traditional research track that will help you progress toward your academic career goal and a one-of-a-kind healthcare start-up management track in collaboration with the G. Brint Ryan College of Business.

What is the University like?

The University of North Texas is a student-centered public research university with over 40,000 students. A Carnegie-ranked Tier One public research university, UNT is one of the nation’s most diverse universities. UNT has been designated as both a Minority Serving Institution and Hispanic Serving Institution and stands committed to equity, diversity, and inclusion in its pursuit of academic excellence.

With 7.5 million people and two international airports, DFW is the fourth-largest metro area in the United States. DFW is racially, ethnically, religiously, and culturally rich and maintains a long-standing commitment to the arts exemplified by local attractions such as the Dallas Arts District and the Fort Worth Cultural District. UNT’s proximity to these major metropolitan centers ensures that our new colleague will be able to access a wide range of activities and cultural experiences.

UNT is located in Denton, Texas, a growing city with a small-town feel and a thriving arts and music scene centered on its downtown Square and is connected by highways and light rail to the major transportation hubs and big-city attractions of Dallas and Fort Worth, about 40 miles away. Want to know more about why you should consider coming to Denton? Check out Discover Denton.

Curious? So are we.

We look forward to receiving your email application, including:

  • a letter of motivation,
  • a brief statement of research interests,
  • copies of Bachelor’s and Master’s degree transcripts,
  • a CV,
  • the names and contact information of at least two academic referees.

To apply for this position, please contact Dr. Melanie Ecker at

Dr. Ecker received NSF CAREER Award

We are excited to share that Dr. Ecker has received the prestigious National Science Foundation (NSF) CAREER award to conduct research on Shape Memory Polymers as Biomaterial.

CAREER: The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity that offers the National Science Foundation’s most prestigious awards in support of early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization. Activities pursued by early-career faculty should build a firm foundation for a lifetime of leadership in integrating education and research.

NSF Website

This CAREER project aims to elucidate the underlying mechanism of the plasticization-induced shape memory effect of thiol-ene based polymers. The model application for this material will be a heat shrink tubing that can shrink at bodily conditions (37° C and simulated body fluids) and can be used to seal colonic anastomosis. The specific three aims are to (1) Systematically investigate the effect of crosslink-density and chain extender length on the plasticization-induced shape memory effect of thiol-ene based polymers. Mechanical and thermomechanical measurements inside simulated body fluids will be used to assess shape memory properties and structure-property relationships. (2) Understand the relationship between material thickness, degree of shape-programming, and radial recovery forces of tube-shaped SMPs to determine optimal design parameters for sufficient shape recovery using the heat shrink tube model. (3) Demonstrate the functionality of a biomedical heat shrink tube that utilizes the plasticization-induced shape recovery through an ex vivo colon anastomosis model and quantify mechanical and sealing properties. The proposed research will advance science by filling the gap in the structure-property relationship of thiol-ene based SMPs that utilize plasticization for their shape recovery, which is essential for designing future devices. In addition, this innovative biomaterial will allow the broader research community to develop novel biomedical devices tailored to specific tissues and applications. Educational and outreach activities will be implemented to raise excitement, awareness, and interest in the emerging field of smart polymeric biomaterials. These will include a gender- and ethnicity-matched mentor-mentee program, training students from underrepresented groups in the PI’s laboratory, incorporating research discoveries into coursework, and communicating research to the general public at local science slam events.

Here is a link to the full abstract